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ABSTRACT  
Most real-world optimization problems consist of huge num-ber of variables that need unreasonable time and resources to 

identify the best solutions. One of the most important benchmark problem is the traveling salesman problem (TSP) which 

represents a large number of real-world optimization problems. Many exact methods and meta-heuristics have tried to solve 

TSP but each of them has its limitations in_nding the optimal solution. As a recent meta-hueristic, the Firey algo-rithm (FA) has 

successfully solved a variety of optimization problems. In this research, we propose a new enhanced cooperative variant of 

discrete FA, named CDFA. The key aim of CDFA is to overcome the limitations of the basic FA, such as trapping in local 

optima and premature conver- gence. Comparative tests employing thirteen TSP benchmark problems from TSBLIB are used to 

verify the validity of CDFA. In the majority of cases, CDFA surpasses state-of-the-art discrete _rey algorithms, such as EDFA 

and MDFA, in terms of average and best solutions. 

Keywords: - Traveling Salesman Problem, Discrete Firey Algorithm, Parallel Firey Algorithm, Crossover Operator, 

Diversi_cation and Intensi_cation. 

 

I.     INTRODUCTION 

In 2008, Yang introduced a new meta-heuristic algorithm, 

named firefly algorithm (FA), which imitates the process of 

flashing light from tropical fireflies that occurs as a 

communication system to either attract mating partners or to 

warn possible predators. FA was initially developed as a meta-

heuristic technique to solve continuous optimization problems. 

FA has demonstrated its ability to be employed in a wide 

range of domains and applications. As a result of FA’s 

attractive success, a number of researchers have attempted to 

enhance the basic form of FA through a number of 

interventions, as stated in surveys [1, 2].  

Furthermore, the FA method was improved in a variety of 

ways, including hybridization and parallelization. The 

majority of the enhancement effort is focused on combining 

FA with different methods. In compared to other previously 

proposed methods, combining FA with other algorithms 

increases the probability of obtaining a high-quality solutions. 

Thus, FA has been hybridized with many approaches to tackle 

continuous optimization problems. For example, FA was used 

with the Lagrangian approach to update the Lagrangian 

multipliers as a new way to address the unit commitment 

problem. Farahani et al. combined FA with Learning 

Automata for parameter adapting and Genetic algorithm for 

improving global search to solve continues numerical 

optimization problem [3]. To solve complex nonlinear 

problem, the standard FA combined with the evolutionary 

operations of Differential Evolution method [4]. A hybrid 

swarm model for microarray data to predict cancer was also 

proposed using FA and ACO to solve multimodal 

optimization problems [5]. Yang in [6] proposed the Eagle 

Strategy, a novel meta-heuristic search approach that 

combines the Levy flight search with the FA to address 

numerical optimization problems.  

FA proves to be a promising combinatorial problem solver 

such as vehicle routing problem (VRP), scheduling and TSP. 

For VRP, FA was hybridized firstly with local search methods, 

and then with crossover and mutation operations [7]. In 

addition, a cooperative version of the previous research was 

proposed [8]. To improve its capability to address these types 

of problems, FA was hybridized with a variety of techniques. 

For example, to solve the graph 3-coloring problem, a local 

search heuristic was integrated with FA [9]. FA was also 

combined with local search to address the problem of 

permutation flow shop scheduling [10]. Horng used LBG 

method for FA initialization to build the vector quantization 

algorithm [11]. Another hybrid FA was developed to solve the 

monoalphabetic substitution cipher utilizing genetic operators 

including crossover and mutation [12]. To solve TSP, many 

hybridized variants of FA were proposed. For instance, Jati 

and Suyanto developed an evolutionary discrete firefly 

algorithm (EDFA) [13], that incorporated evolutionary 

mutation and selection but was also stuck in local optima in 

some instances. In addition, FA was merged with a greedy 

technique by SAraei et al. [14]. Although its good result, it has 

a drawback of taking a huge time to obtain the optimal 

solution due to the repeated cycle of greedy mutation jump. 

FA was integrated with the k-opt method and the multiple 

population approach by Zhou (MDFA) [15, 16]. In terms of 

convergence speed and solution quality, the findings revealed 

that MDFA outperformed EDFA. But It may still be trapped 

into local optima in spite of using small size instances for 

validating its performance. If we look at the FA, we may point 

to the study that was just proposed in [17]. The authors of this 

work provided the modified FA to improve its convergence 

RESEARCH ARTICLE                                     OPEN ACCESS 

http://www.ijitjournal.org/


         International Journal of Information Technology (IJIT) – Volume 8 Issue 2, Mar - Apr 2022 

 

ISSN: 2454-5414                                             www.ijitjournal.org                                                  Page 19 

and search performance. To do the modifications, FA was 

hybridized with 3-opt and 2-opt methods, and then with 

crossover and mutation operations. [18] also introduced a 

hybrid method in which an FA is paired with a GA. in order to 

prevent the algorithm from sliding into local optimums, the 

distance of the FA was redefined by proposing a swap 

sequence and a swap operator. [19] presents a more detailed 

analysis that tried to address an extension of the TSP that 

allows more than one salesman to be utilized in the solution 

which known as the Multiple TSP. [20] proposes a new 

variant of swap-based FA hybridized with deferent methods 

including Fixed Radius Near Neighbor 2-opt operator, Nearest 

Neighborhood initialization, a movement strategy and reset 

method. [21, 22] are two more remarkable and useful studies. 

The first utilized the neighborhood search algorithm’s 

dynamic mechanism, while the second uses the k opt method. 

[23, 24] are two more recent works that focus on the FA 

application.  

For parallelization, there were only two researches that 

parallelized continuous FA [25, 26]. In [25] a GPU-based FA 

was proposed with a fixed-interaction distance and a uniform-

grid acceleration data structure that was parallelized for multi-

modal functions. FA was also parallelized in [26] in attempt to 

address an unconstrained continuous optimization problem.  

A new cooperative discrete variation of FA was proposed 

in this paper to solve TSP. the work has three main 

contributions, which are briefly explained as follows. Firstly, 

to accelerate FA convergence toward the optimal solution, FA 

was combined with 2-opt and 3-opt. Secondly, the crossover 

operator is used in the second step to ensure that the current 

search space is efficiently exploited. The third method 

involves using parallelization principles of GA island models 

in order to preserve diversity and prevent being stuck in local 

minima.  

The rest of this work is arranged in the following manner. 

The fundamental FA, discrete FA, and crossover operations 

are briefly discussed in Section 2. Section 3 describes our 

parallel discrete version of FA for the TSP (CDFA). The 

findings of numerical tests on a set of benchmark instances of 

TSP selected from the TSPLIB library were detailed explained 

and discussed in Section 4. The conclusion and future work 

are presented in Section 5.  

II.     PRELIMINARIES 

A brief revision of the basic FA, its discrete variant and the 

crossover operation is introduced in the following subsections.  

A. Firefly Algorithm2.1 Firefly Algorithm 

 Xin-She Yang developed FA, a population-based meta-

heuristic algorithm, at Cambridge University in late 2007 and 

early 2008 [27, 28]. FA imitates a nature phenomenon of 

fireflies’ flashing light. The flashing pattern plays an 

important role to serve these fireflies to accomplish different 

tasks such as communication and attracting prey. The light 

intensity I, which is inversely proportional to the square of the 

distance r 2 between two fireflies, is calculated using a 

physical formula. This formula taking into accounts the light 

absorption by the medium, which causes the light to become 

weaker as the distance between the two fireflies grows.  

FA was designed by utilizing the following three principles 

for idealizing the flashing properties of fireflies: i) Each 

firefly, regardless of its sex, is attracted to other fireflies. ii) 

Attractiveness β is proportional to light intensity (brightness) I, 

even though they’re inversely proportional to distance. As a 

result, any flashing fireflies will be attracted (moved) to the 

brighter (best) one. If there isn’t a brighter firefly nearby, the 

current one will relocate at random. iii) The fitness function’s 

landscape determines the brightness of a firefly.  

The major steps of the basic FA are given below:  

Step1. (Initialization of Fireflies): To assure the diversity 

of the solution, a population of fireflies is initialized with 

random values in this step.  

Step 2. (Fitness Evaluation of Fireflies): According to the 

problem under consideration, the light intensity I is calculated 

and the fitness function of each firefly in the population is 

evaluated. For each firefly i, the solution is x_i and its light 

intensity I_i is proportional to the fitness function value I(xi) 

∝ f(xi). Equation 1 shows how I is calculated.  

             (1)  

where I_0 is the source’s light intensity and gamma is a 

preset light absorption coefficient that is used to estimate the 

medium’s light absorption.  

Step 3. (Updating the Fireflies): According to their 

attraction, each firefly i goes toward another brighter (better) 

one j, resulting in the formation of a new brighter firefly 

position (solution). The attractiveness of fireflies is related to 

the intensity of their light I, as illustrated by Equation 2:  

,       (2)  

where β_0 denotes attractiveness at a distance of  r = zero. 

While the traveling distance, of a firefly from current location 

i to the new location j, is calculated as indicated in Equation 3:  

( , (3) 

where  represents the firefly position i at the previous 

iteration t and the attractiveness at distance r = zero 

represented by β0, γ is the coefficient of the light absorption 

represented as a scaling factor, α represents a randomization 

parameter which reduced gradually to ensure that the 

algorithm will converge properly, indicates a vector 

generated as Gaussian distribution random numbers and rij is 

the Cartesian distance at positions i and j between the two 

fireflies xi and xj, that is calculated according to Equation 4:  

,                 (4) 

Step4. (Determining the brightest firefly): Determination 

of the current brightest firefly x* in the population at iteration 

t based on the fitness function ) is conducted in this step.  

Step5. (Checking of the termination criterion): Checking 

if the maximum number of iterations is reached or the 

optimum solution is obtained, returning the brightest firefly x* 

as the global best solution; if not the Steps 2, 3 and 4 are 

repeated. 
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B. Discrete variant of FA for TSP  

As previously stated, FA cannot be used to solve discrete 

problems directly. Because TSP is a discrete problem, a 

population of fireflies is initialized as a   two dimensional 

array (N*M). The number of fireflies (solutions) is 

represented by N where the elements of solution (cities) are 

represented by M. The TSP solution is a permutation of cities 

in the population represented by a firefly. In a given tour 

(solution), each firefly element represents a city.  

To adapt FA to solve TSP, Zhou et al. [16] combined FA 

with the k-opt technique, which simulates firefly movement. 

The hamming distance, which represents the number of non-

corresponding elements in the solution, was used to determine 

the distance between any two fireflies positions i and j.  

TSP’s movement philosophy is determined by the order in 

which cities appear in the solution vector. By modifying the 

order of cities in that solution vector, different solutions may 

be formed. The 2-opt move and 3-opt move strategies may be 

used to shift the order of cities, similarly to the MDFA [16], 

improved hybrid discrete bat algorithm (IHDBA) [29], multi-

population discrete bat algorithm (MPDBA) [30], and 

improved bat algorithm (IBA) [31]. Firefly movement is 

represented by this alteration. As a result, during iteration t, 

each firefly x_iwill travel from one place i-1 to a new place  i 

according to either 2-opt move or 3-opt move as described in 

Equations 5 and 6:  

,      (5)  

,        (6)  

The value of the firefly’s light intensity is controlling this 

change. The light intensity I in this version of FA is calculated 

using Equation 7:  

,                  (7) 

,    (8)  

C. where Ii=i represents the light intensity of firefly xi which 

equals to a randomly selected number ranging from 1 to rij. 

rij indicates the hamming distance between the current 

firefly xi and firefly xj that refers to the best firefly x* in 

the population. Light intensity also determines the 

neighboring locations in a tour (solution). The movement 

behavior of the fireflies varies in some way, thus they 

seems to get some kind of intelligence. As a result, the 

movement of a firefly changes depending on how distant it 

is from the population’s brightest firefly x*. Consequently, 

before moving, a firefly will check its light intensity . 

The firefly i will use 2-opt local search to do a short move 

if the intensity value is less than half of the cities; 

otherwise, it will use 3-opt to perform a lengthy move as 

stated previously in Equations 5 and 6.  

D. Crossover  

Evolutionary algorithms inspired a crossover operation 

(EA). This process produces new solutions that are close to 

two previously chosen solutions from a population. As a result, 

using crossover is an effective operation to do a local search 

and exploit the search space. [32] presented a variety of 

crossover operators with varying implementations. Partially 

matched or mapped crossover (PMX) is the one that TSP 

users are most familiar with. In PMX, two crossover locations 

are picked at random from a population’s two solutions. The 

portion of solutions between the two crossing locations 

determines a matching selection that influences cross through 

position-by-position exchange processes. For example, 

consider these two parents:  

P1: 4 5 1 2 | 9 8 7 3 | 6 10  

P2: 6 4 5 1 | 7 8 2 10 | 3 9  

We can get the following offspring by using PMX 

crossover:  

O1: 4 5 1 2 | 7 8 10 | 9 6 3  

O2: 6 4 5 1 | 9 8 7 3 | 10 2 3 

III. COOPERATIVE DISCRETE FIREFLY 

ALGORITHM FOR TSP (CDFA)  

The cooperative discrete FA model (CDFA) is a discrete 

FA version simulates the GA island model, which was, in turn, 

inspired by nature. The parallel FA model has two key 

characteristics that have been absorbed. The first is to prevent 

early convergence, which is caused in the basic FA, in order 

to preserve population diversity and enhance the solution of 

the problem under consideration. The second is to accelerate 

convergence by using many populations and assessing all 

fireflies inside each population concurrently. This cooperative 

model specifies a logical structure that may be implemented 

on a wide range of architectures. In any case, this study 

established the concept as a collection of populations that use 

multi-thread architecture to disperse themselves over the 

available processors. From time to time, each population 

autonomously searches out the best fireflies from the other 

populations and transfers them with others. In the suggested 

cooperative model, some fireflies from a population P[i], 

where i is the population index, are transmitted to another 

population P[(Rand(1; n)], where n is the number of 

populations. The following steps demonstrate the detailed 

overview of the design of CDFA algorithm.  

Step 1: Parameters Initialization. All parameters are 

initialized initially in this stage to optimize the performance of 

the CDFA algorithm. The following are the parameters that 

are defined.  

I. Basic FA parameters: The brightness (light intensity) 

and population size are the two most fundamental 

FA parameters. Light intensity reflects the 

advantages and disadvantages of firefly location 

and decides its movement direction. Population 

size indicates the number of the fireflies within 

each population which is determined at the 

beginning.  

II. Number of populations (NP): The number of 

populations in CDFA is specified by this 

parameter. All populations are usually created 

with the same number of fireflies, allowing each 

population to be allocated to its own thread in the 

parallel computing system.  
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III. Exchange Interval (EI): The value of this parameter 

denotes the number of iterations required before 

fireflies begin to exchange across populations.  

IV. Exchange Rate (ER): The percentage of fireflies to 

be moved from one population to another is 

determined by this parameter.  

V. Exchange Topology (ET): The source and destination 

populations for swapping are determined by this 

parameter.  

VI. Exchange Policy (EP): This parameter determines 

how the firefly from the source population are 

selected for exchanging, as well as how they are 

substituted in the destination.  

VII. Number of Iterations: This parameter specifies the 

number of iterations necessary to obtain the best 

solution. This parameter, in addition to the best 

solution, represents the algorithm’s termination 

criterion. 

 Step 2: Population Initialization. From the available 

range of values, each population is initialized with random 

values for each firefly as stated in Section 2.2. This step 

ensures the diversity of solutions. Then, depending to the 

problem under consideration, calculate light intensity and 

evaluate each firefly in the population using the fitness 

function.  

Step 3: Population Updating. Create a new better firefly 

position (solution) by shifting each firefly xi approaching the 

brightest one xj depending on their attractiveness. This may be 

accomplished using either 2-opt or 3-opt procedures. 

Concurrently, the updated firefly’s fitness function f(x_i) is 

calculated.  

Step 4: Fireflies Exchanging. When the predetermined EI 

value is reached, choose the source and destination 

populations, and based on a predefined EP, exchange a 

number of fireflies equal to the ER between these two 

populations.  

Step 5: Termination Criterion Checking. When the 

optimal solution is obtained or the maximum number of 

iterations is met, the CDFA algorithm is stopped.  

IV. EXPERIMENTAL RESULTS  

In this section, the performance of the CDFA algorithm is 

reviewed and analyzed in terms of the obtained computational 

results. For this analysis, two different tests were carried out, 

each using a different symmetric TSP standard benchmark 

with varying lengths taken from TSPLIB 

(http://comopt.ifi.uniheidelberg.de/software/TSPLIB95/). 

Both were ran on an Intel Core i5 processor. After performing 

the experiments 10 times for each instance, the results were 

gathered and reported as presented in this section.  

CDFA parameters were set up as described in Table I. Each 

population of 50 fireflies was used to launch CDFA. There 

were a total of 500 iterations. Number of threads (number of 

populations) was 10, Exchange rate (ER) was set to 10 and 

exchange interval was equals 20 iterations. The exchange 

policy was to randomly select best fireflies from one 

population and substitute them with the worst ones since each 

population can communicate with each population in the 

model. 

TABLE 1. PARAMETER SETTING OF CDFA PARAMETER 

Parameter Value 

Number of Iterations 500 

Population size 50 

populations (threads) 

Number 
10 

Exchange Interval(EI) 20 

Exchange Rate(ER) 10 

Exchange policy Select the best and replace with the worst 

Exchange Topology Fully connected graph 

The three CDFA algorithm versions are analysed and 

compared in the first experiment. The first is DFA-opt in 

which the 2-opt and 3-opt strategies were integrated with 

fundamental discrete FA algorithm. The second is DFA-xover 

in which DFA-opt was combined with crossover operation. 

The third type is CDFA, which is the final improvement over 

the basic discrete FA. CDFA is DFA-xover with the 

parallelized cooperative model.  

Table II demonstrates how the computing results improved 

when six symmetric TSP standard benchmarks were used with 

the different proposed versions of FA. Both DFA-xover and 

DFA-opt achieve similar results to the optimal solution in the 

following instances: Bayg29, berlin52, St70, Eil51, and Eil76, 

as can be seen from the tabulated values. In the instance of 

tsp225, however, DFA-xover exceeds DFA-opt in terms of 

optimum solution. DFA-xover, on the other hand, 

outperformed DFA-opt in nearly half of the examined cases 

when it refers to the average solution. The reason for this is 

due to the use of a crossover operation, which takes advantage 

of the algorithm’s detected promising solutions and exploits 

the search space to speed up its learning capabilities. Similarly, 

CDFA outperformed DFA-xover in about 83 precent of all 

examined cases, in addition, CDFA outperformed DFA-opt in 

all instances. This advantage of CDFA is attributed to the use 

of a parallelized cooperative model in the algorithm’s search 

process, which increases the diversity in the event that 

solutions become stuck in local optima. 

TABLE II. CDFA RESULTS COMPARED TO DFA-OPT, DFA-XOVER. THE 

FINDINGS WERE COMPILED FROM TEN DIFFERENT RUNS. THE MOST PROMISING 

OUTCOMES ARE HIGHLIGHTED IN BOLD. 

Instance Optimal DFA-opt DFA-xover CDFA 

Avg. Best Avg. Best Avg. Best 

Bayg29 1610 1610 1610 1610 1610 1610 1610 

Eil51 426 426.3 426 426.4 426 426 426 

berlin52 7542 7542 7542 7542 7542 7542 7542 

St70 675 675.7 675 675.6 675 675 675 

Eil76 538 539.8 538 539 538 538 538 

tsp225 3845 3943.1 3923 3941.9 3920 3916 3916 
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TABLE III. CDFA RESULTS COMPARED TO MDFA AND PDFA. THE CDFA FINDINGS WERE COMPILED FROM TEN DIFFERENT RUNS. THE 

MOST PROMISING OUTCOMES ARE HIGHLIGHTED IN BOLD.

In
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a280 2578 2579 2579 0.039 0.039 - - - - - - - - 

bayg29 1610 1610 1610 0.000 0.000 1624 1639 0.870 1.801 1610 1614 0 0.248 

bays29 2020 2020 2020 0.000 0.000 2020 2066 0.000 2.277 2020 2036 0 0.792 

berlin52 7542 7542 7542 0.000 0.000 8752 9135 16.044 21.122 7681 7933 1.843 5.184 

eil51 426 426 426 0.000 0.000 497 540 16.667 26.761 432 443 1.409 3.991 

eil76 538 538 538 0.000 0.000 789 813 46.654 51.115 554 574 2.974 6.691 

gr202 40160 40161 40161 0.003 0.003 - - - - - - - - 

gr666 294358 295584 295584 0.417 0.417 - - - - - - - - 

pcb442 50778 50913 50913 0.266 0.266 - - - - - - - - 

st70 675 675 675 0.000 0.000 985 1039 45.926 53.926 682 706 1.037 4.593 

tsp225 3845 3916 3916 1.847 1.847 - - - - - - - - 

ulysses16 6859 6860 6860 0.015 0.015 - - - - - - - - 

ulysses22 7013 7014 7014 0.014 0.014 - - - - - - - - 

  
In the second experiment, we used thirteen symmetric TSP 

standard benchmarks to compare our proposed method, CDFA, 

to the state-of-the-art discrete FA algorithms, PDFA and 

MDFA.  

Table III compares CDFA to the state-of-the-art discrete 

FA algorithms, PDFA and MDFA, in terms of best and 

average solution using thirteen symmetric TSP benchmarks. 

In most cases, CDFA was able to obtain optimal results of 

ability to attain the optimal solution, with regard to the best 

and average solutions (ulysses16, ulysses22, bayg29, bays29, 

berlin52, eil51, eil76, st70 and tsp225). In the following four 

cases, CDFA came close to achieving an optimal solution for 

both the best and average solution. Furthermore, when 

compared to the average solution, CDFA surpassed the 

MDFA and PDFA algorithms in reaching the best solutions 

for all instances. Generally, in comparison to previous 

algorithms, the CDFA was able to search for the best solution 

until it met the termination criterion without premature 

convergence or stagnation, notably for medium and large 

cases. In general, the findings show that the CDFA structure, 

which is based on the integration of numerous ideas such as 

crossover, local search approaches, and the cooperative model, 

achieved the desired balance of diversification and 

intensification. As a result, the CDFA algorithm is able to 

escape local optima and accelerate convergence. Therefore, 

CDFA outperforms other algorithms such as PDFA and 

MDFA in obtaining suboptimal/optimal solutions to TSP 

problems. 

 

 

 

V. CONCLUSION  
 

This work used a new proposed FA version named the 

cooperative discrete firefly algorithm (CDFA), which is based 

on three primary contributions. The first is the use of local 

search techniques containing 2-opt and 3-opt to accelerate 

convergence toward optimum solutions. The second is the 

adoption of the crossover operator, which increases the 

intensification and so aids CDFA in efficiently exploiting the 

existing search space. The third step is to construct a multi-

population model with a carefully managed communication 

strategy. This paradigm allows for the preservation of the 

diversity while also speeding up the execution. In terms of 

finding the optimal/near-optimal solutions for numerous 

benchmark TSP problems in the early iterations, the 

experimental analysis demonstrated that the CDFA variation 

outperforms the MDFA and PDFA. These findings show that 

CDFA can solve large-scale TSP and, as a result, more 

difficult optimization problems in real-world applications. 

CDFA’s effectiveness may pave the way for new algorithms 

to improve the quality of solutions to challenging optimization 

problems.  
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