
 International Journal of Information Technology (IJIT) – Volume 8 Issue 2, Mar - Apr 2022

ISSN: 2454-5414 www.ijitjournal.org Page 18

Cooperative Discrete Firefly Algorithm to Solve the Traveling

Salesman Problem
Abdulqader M. Mohsen [1], Wedad Al-sorori [2], Abdullatif Ghallab [3]

[1],[2],[3] University of Science and Technology, Sana’a - Yemen

ABSTRACT
Most real-world optimization problems consist of huge num-ber of variables that need unreasonable time and resources to

identify the best solutions. One of the most important benchmark problem is the traveling salesman problem (TSP) which

represents a large number of real-world optimization problems. Many exact methods and meta-heuristics have tried to solve

TSP but each of them has its limitations in_nding the optimal solution. As a recent meta-hueristic, the Firey algo-rithm (FA) has

successfully solved a variety of optimization problems. In this research, we propose a new enhanced cooperative variant of

discrete FA, named CDFA. The key aim of CDFA is to overcome the limitations of the basic FA, such as trapping in local

optima and premature conver- gence. Comparative tests employing thirteen TSP benchmark problems from TSBLIB are used to

verify the validity of CDFA. In the majority of cases, CDFA surpasses state-of-the-art discrete _rey algorithms, such as EDFA

and MDFA, in terms of average and best solutions.

Keywords: - Traveling Salesman Problem, Discrete Firey Algorithm, Parallel Firey Algorithm, Crossover Operator,

Diversi_cation and Intensi_cation.

I. INTRODUCTION

In 2008, Yang introduced a new meta-heuristic algorithm,

named firefly algorithm (FA), which imitates the process of

flashing light from tropical fireflies that occurs as a

communication system to either attract mating partners or to

warn possible predators. FA was initially developed as a meta-

heuristic technique to solve continuous optimization problems.

FA has demonstrated its ability to be employed in a wide

range of domains and applications. As a result of FA’s

attractive success, a number of researchers have attempted to

enhance the basic form of FA through a number of

interventions, as stated in surveys [1, 2].

Furthermore, the FA method was improved in a variety of

ways, including hybridization and parallelization. The

majority of the enhancement effort is focused on combining

FA with different methods. In compared to other previously

proposed methods, combining FA with other algorithms

increases the probability of obtaining a high-quality solutions.

Thus, FA has been hybridized with many approaches to tackle

continuous optimization problems. For example, FA was used

with the Lagrangian approach to update the Lagrangian

multipliers as a new way to address the unit commitment

problem. Farahani et al. combined FA with Learning

Automata for parameter adapting and Genetic algorithm for

improving global search to solve continues numerical

optimization problem [3]. To solve complex nonlinear

problem, the standard FA combined with the evolutionary

operations of Differential Evolution method [4]. A hybrid

swarm model for microarray data to predict cancer was also

proposed using FA and ACO to solve multimodal

optimization problems [5]. Yang in [6] proposed the Eagle

Strategy, a novel meta-heuristic search approach that

combines the Levy flight search with the FA to address

numerical optimization problems.

FA proves to be a promising combinatorial problem solver

such as vehicle routing problem (VRP), scheduling and TSP.

For VRP, FA was hybridized firstly with local search methods,

and then with crossover and mutation operations [7]. In

addition, a cooperative version of the previous research was

proposed [8]. To improve its capability to address these types

of problems, FA was hybridized with a variety of techniques.

For example, to solve the graph 3-coloring problem, a local

search heuristic was integrated with FA [9]. FA was also

combined with local search to address the problem of

permutation flow shop scheduling [10]. Horng used LBG

method for FA initialization to build the vector quantization

algorithm [11]. Another hybrid FA was developed to solve the

monoalphabetic substitution cipher utilizing genetic operators

including crossover and mutation [12]. To solve TSP, many

hybridized variants of FA were proposed. For instance, Jati

and Suyanto developed an evolutionary discrete firefly

algorithm (EDFA) [13], that incorporated evolutionary

mutation and selection but was also stuck in local optima in

some instances. In addition, FA was merged with a greedy

technique by SAraei et al. [14]. Although its good result, it has

a drawback of taking a huge time to obtain the optimal

solution due to the repeated cycle of greedy mutation jump.

FA was integrated with the k-opt method and the multiple

population approach by Zhou (MDFA) [15, 16]. In terms of

convergence speed and solution quality, the findings revealed

that MDFA outperformed EDFA. But It may still be trapped

into local optima in spite of using small size instances for

validating its performance. If we look at the FA, we may point

to the study that was just proposed in [17]. The authors of this

work provided the modified FA to improve its convergence

RESEARCH ARTICLE OPEN ACCESS

http://www.ijitjournal.org/

 International Journal of Information Technology (IJIT) – Volume 8 Issue 2, Mar - Apr 2022

ISSN: 2454-5414 www.ijitjournal.org Page 19

and search performance. To do the modifications, FA was

hybridized with 3-opt and 2-opt methods, and then with

crossover and mutation operations. [18] also introduced a

hybrid method in which an FA is paired with a GA. in order to

prevent the algorithm from sliding into local optimums, the

distance of the FA was redefined by proposing a swap

sequence and a swap operator. [19] presents a more detailed

analysis that tried to address an extension of the TSP that

allows more than one salesman to be utilized in the solution

which known as the Multiple TSP. [20] proposes a new

variant of swap-based FA hybridized with deferent methods

including Fixed Radius Near Neighbor 2-opt operator, Nearest

Neighborhood initialization, a movement strategy and reset

method. [21, 22] are two more remarkable and useful studies.

The first utilized the neighborhood search algorithm’s

dynamic mechanism, while the second uses the k opt method.

[23, 24] are two more recent works that focus on the FA

application.

For parallelization, there were only two researches that

parallelized continuous FA [25, 26]. In [25] a GPU-based FA

was proposed with a fixed-interaction distance and a uniform-

grid acceleration data structure that was parallelized for multi-

modal functions. FA was also parallelized in [26] in attempt to

address an unconstrained continuous optimization problem.

A new cooperative discrete variation of FA was proposed

in this paper to solve TSP. the work has three main

contributions, which are briefly explained as follows. Firstly,

to accelerate FA convergence toward the optimal solution, FA

was combined with 2-opt and 3-opt. Secondly, the crossover

operator is used in the second step to ensure that the current

search space is efficiently exploited. The third method

involves using parallelization principles of GA island models

in order to preserve diversity and prevent being stuck in local

minima.

The rest of this work is arranged in the following manner.

The fundamental FA, discrete FA, and crossover operations

are briefly discussed in Section 2. Section 3 describes our

parallel discrete version of FA for the TSP (CDFA). The

findings of numerical tests on a set of benchmark instances of

TSP selected from the TSPLIB library were detailed explained

and discussed in Section 4. The conclusion and future work

are presented in Section 5.

II. PRELIMINARIES

A brief revision of the basic FA, its discrete variant and the

crossover operation is introduced in the following subsections.

A. Firefly Algorithm2.1 Firefly Algorithm

 Xin-She Yang developed FA, a population-based meta-

heuristic algorithm, at Cambridge University in late 2007 and

early 2008 [27, 28]. FA imitates a nature phenomenon of

fireflies’ flashing light. The flashing pattern plays an

important role to serve these fireflies to accomplish different

tasks such as communication and attracting prey. The light

intensity I, which is inversely proportional to the square of the

distance r 2 between two fireflies, is calculated using a

physical formula. This formula taking into accounts the light

absorption by the medium, which causes the light to become

weaker as the distance between the two fireflies grows.

FA was designed by utilizing the following three principles

for idealizing the flashing properties of fireflies: i) Each

firefly, regardless of its sex, is attracted to other fireflies. ii)

Attractiveness β is proportional to light intensity (brightness) I,

even though they’re inversely proportional to distance. As a

result, any flashing fireflies will be attracted (moved) to the

brighter (best) one. If there isn’t a brighter firefly nearby, the

current one will relocate at random. iii) The fitness function’s

landscape determines the brightness of a firefly.

The major steps of the basic FA are given below:

Step1. (Initialization of Fireflies): To assure the diversity

of the solution, a population of fireflies is initialized with

random values in this step.

Step 2. (Fitness Evaluation of Fireflies): According to the

problem under consideration, the light intensity I is calculated

and the fitness function of each firefly in the population is

evaluated. For each firefly i, the solution is x_i and its light

intensity I_i is proportional to the fitness function value I(xi)

∝ f(xi). Equation 1 shows how I is calculated.

 (1)

where I_0 is the source’s light intensity and gamma is a

preset light absorption coefficient that is used to estimate the

medium’s light absorption.

Step 3. (Updating the Fireflies): According to their

attraction, each firefly i goes toward another brighter (better)

one j, resulting in the formation of a new brighter firefly

position (solution). The attractiveness of fireflies is related to

the intensity of their light I, as illustrated by Equation 2:

, (2)

where β_0 denotes attractiveness at a distance of r = zero.

While the traveling distance, of a firefly from current location

i to the new location j, is calculated as indicated in Equation 3:

(, (3)

where represents the firefly position i at the previous

iteration t and the attractiveness at distance r = zero

represented by β0, γ is the coefficient of the light absorption

represented as a scaling factor, α represents a randomization

parameter which reduced gradually to ensure that the

algorithm will converge properly, indicates a vector

generated as Gaussian distribution random numbers and rij is

the Cartesian distance at positions i and j between the two

fireflies xi and xj, that is calculated according to Equation 4:

, (4)

Step4. (Determining the brightest firefly): Determination

of the current brightest firefly x* in the population at iteration

t based on the fitness function) is conducted in this step.

Step5. (Checking of the termination criterion): Checking

if the maximum number of iterations is reached or the

optimum solution is obtained, returning the brightest firefly x*

as the global best solution; if not the Steps 2, 3 and 4 are

repeated.

http://www.ijitjournal.org/

 International Journal of Information Technology (IJIT) – Volume 8 Issue 2, Mar - Apr 2022

ISSN: 2454-5414 www.ijitjournal.org Page 20

B. Discrete variant of FA for TSP

As previously stated, FA cannot be used to solve discrete

problems directly. Because TSP is a discrete problem, a

population of fireflies is initialized as a two dimensional

array (N*M). The number of fireflies (solutions) is

represented by N where the elements of solution (cities) are

represented by M. The TSP solution is a permutation of cities

in the population represented by a firefly. In a given tour

(solution), each firefly element represents a city.

To adapt FA to solve TSP, Zhou et al. [16] combined FA

with the k-opt technique, which simulates firefly movement.

The hamming distance, which represents the number of non-

corresponding elements in the solution, was used to determine

the distance between any two fireflies positions i and j.

TSP’s movement philosophy is determined by the order in

which cities appear in the solution vector. By modifying the

order of cities in that solution vector, different solutions may

be formed. The 2-opt move and 3-opt move strategies may be

used to shift the order of cities, similarly to the MDFA [16],

improved hybrid discrete bat algorithm (IHDBA) [29], multi-

population discrete bat algorithm (MPDBA) [30], and

improved bat algorithm (IBA) [31]. Firefly movement is

represented by this alteration. As a result, during iteration t,

each firefly x_iwill travel from one place i-1 to a new place i

according to either 2-opt move or 3-opt move as described in

Equations 5 and 6:

, (5)

, (6)

The value of the firefly’s light intensity is controlling this

change. The light intensity I in this version of FA is calculated

using Equation 7:

, (7)

, (8)

C. where Ii=i represents the light intensity of firefly xi which

equals to a randomly selected number ranging from 1 to rij.

rij indicates the hamming distance between the current

firefly xi and firefly xj that refers to the best firefly x* in

the population. Light intensity also determines the

neighboring locations in a tour (solution). The movement

behavior of the fireflies varies in some way, thus they

seems to get some kind of intelligence. As a result, the

movement of a firefly changes depending on how distant it

is from the population’s brightest firefly x*. Consequently,

before moving, a firefly will check its light intensity .

The firefly i will use 2-opt local search to do a short move

if the intensity value is less than half of the cities;

otherwise, it will use 3-opt to perform a lengthy move as

stated previously in Equations 5 and 6.

D. Crossover

Evolutionary algorithms inspired a crossover operation

(EA). This process produces new solutions that are close to

two previously chosen solutions from a population. As a result,

using crossover is an effective operation to do a local search

and exploit the search space. [32] presented a variety of

crossover operators with varying implementations. Partially

matched or mapped crossover (PMX) is the one that TSP

users are most familiar with. In PMX, two crossover locations

are picked at random from a population’s two solutions. The

portion of solutions between the two crossing locations

determines a matching selection that influences cross through

position-by-position exchange processes. For example,

consider these two parents:

P1: 4 5 1 2 | 9 8 7 3 | 6 10

P2: 6 4 5 1 | 7 8 2 10 | 3 9

We can get the following offspring by using PMX

crossover:

O1: 4 5 1 2 | 7 8 10 | 9 6 3

O2: 6 4 5 1 | 9 8 7 3 | 10 2 3

III. COOPERATIVE DISCRETE FIREFLY

ALGORITHM FOR TSP (CDFA)

The cooperative discrete FA model (CDFA) is a discrete

FA version simulates the GA island model, which was, in turn,

inspired by nature. The parallel FA model has two key

characteristics that have been absorbed. The first is to prevent

early convergence, which is caused in the basic FA, in order

to preserve population diversity and enhance the solution of

the problem under consideration. The second is to accelerate

convergence by using many populations and assessing all

fireflies inside each population concurrently. This cooperative

model specifies a logical structure that may be implemented

on a wide range of architectures. In any case, this study

established the concept as a collection of populations that use

multi-thread architecture to disperse themselves over the

available processors. From time to time, each population

autonomously searches out the best fireflies from the other

populations and transfers them with others. In the suggested

cooperative model, some fireflies from a population P[i],

where i is the population index, are transmitted to another

population P[(Rand(1; n)], where n is the number of

populations. The following steps demonstrate the detailed

overview of the design of CDFA algorithm.

Step 1: Parameters Initialization. All parameters are

initialized initially in this stage to optimize the performance of

the CDFA algorithm. The following are the parameters that

are defined.

I. Basic FA parameters: The brightness (light intensity)

and population size are the two most fundamental

FA parameters. Light intensity reflects the

advantages and disadvantages of firefly location

and decides its movement direction. Population

size indicates the number of the fireflies within

each population which is determined at the

beginning.

II. Number of populations (NP): The number of

populations in CDFA is specified by this

parameter. All populations are usually created

with the same number of fireflies, allowing each

population to be allocated to its own thread in the

parallel computing system.

http://www.ijitjournal.org/

 International Journal of Information Technology (IJIT) – Volume 8 Issue 2, Mar - Apr 2022

ISSN: 2454-5414 www.ijitjournal.org Page 21

III. Exchange Interval (EI): The value of this parameter

denotes the number of iterations required before

fireflies begin to exchange across populations.

IV. Exchange Rate (ER): The percentage of fireflies to

be moved from one population to another is

determined by this parameter.

V. Exchange Topology (ET): The source and destination

populations for swapping are determined by this

parameter.

VI. Exchange Policy (EP): This parameter determines

how the firefly from the source population are

selected for exchanging, as well as how they are

substituted in the destination.

VII. Number of Iterations: This parameter specifies the

number of iterations necessary to obtain the best

solution. This parameter, in addition to the best

solution, represents the algorithm’s termination

criterion.

 Step 2: Population Initialization. From the available

range of values, each population is initialized with random

values for each firefly as stated in Section 2.2. This step

ensures the diversity of solutions. Then, depending to the

problem under consideration, calculate light intensity and

evaluate each firefly in the population using the fitness

function.

Step 3: Population Updating. Create a new better firefly

position (solution) by shifting each firefly xi approaching the

brightest one xj depending on their attractiveness. This may be

accomplished using either 2-opt or 3-opt procedures.

Concurrently, the updated firefly’s fitness function f(x_i) is

calculated.

Step 4: Fireflies Exchanging. When the predetermined EI

value is reached, choose the source and destination

populations, and based on a predefined EP, exchange a

number of fireflies equal to the ER between these two

populations.

Step 5: Termination Criterion Checking. When the

optimal solution is obtained or the maximum number of

iterations is met, the CDFA algorithm is stopped.

IV. EXPERIMENTAL RESULTS

In this section, the performance of the CDFA algorithm is

reviewed and analyzed in terms of the obtained computational

results. For this analysis, two different tests were carried out,

each using a different symmetric TSP standard benchmark

with varying lengths taken from TSPLIB

(http://comopt.ifi.uniheidelberg.de/software/TSPLIB95/).

Both were ran on an Intel Core i5 processor. After performing

the experiments 10 times for each instance, the results were

gathered and reported as presented in this section.

CDFA parameters were set up as described in Table I. Each

population of 50 fireflies was used to launch CDFA. There

were a total of 500 iterations. Number of threads (number of

populations) was 10, Exchange rate (ER) was set to 10 and

exchange interval was equals 20 iterations. The exchange

policy was to randomly select best fireflies from one

population and substitute them with the worst ones since each

population can communicate with each population in the

model.

TABLE 1. PARAMETER SETTING OF CDFA PARAMETER

Parameter Value

Number of Iterations 500

Population size 50

populations (threads)

Number
10

Exchange Interval(EI) 20

Exchange Rate(ER) 10

Exchange policy Select the best and replace with the worst

Exchange Topology Fully connected graph

The three CDFA algorithm versions are analysed and

compared in the first experiment. The first is DFA-opt in

which the 2-opt and 3-opt strategies were integrated with

fundamental discrete FA algorithm. The second is DFA-xover

in which DFA-opt was combined with crossover operation.

The third type is CDFA, which is the final improvement over

the basic discrete FA. CDFA is DFA-xover with the

parallelized cooperative model.

Table II demonstrates how the computing results improved

when six symmetric TSP standard benchmarks were used with

the different proposed versions of FA. Both DFA-xover and

DFA-opt achieve similar results to the optimal solution in the

following instances: Bayg29, berlin52, St70, Eil51, and Eil76,

as can be seen from the tabulated values. In the instance of

tsp225, however, DFA-xover exceeds DFA-opt in terms of

optimum solution. DFA-xover, on the other hand,

outperformed DFA-opt in nearly half of the examined cases

when it refers to the average solution. The reason for this is

due to the use of a crossover operation, which takes advantage

of the algorithm’s detected promising solutions and exploits

the search space to speed up its learning capabilities. Similarly,

CDFA outperformed DFA-xover in about 83 precent of all

examined cases, in addition, CDFA outperformed DFA-opt in

all instances. This advantage of CDFA is attributed to the use

of a parallelized cooperative model in the algorithm’s search

process, which increases the diversity in the event that

solutions become stuck in local optima.

TABLE II. CDFA RESULTS COMPARED TO DFA-OPT, DFA-XOVER. THE

FINDINGS WERE COMPILED FROM TEN DIFFERENT RUNS. THE MOST PROMISING

OUTCOMES ARE HIGHLIGHTED IN BOLD.

Instance Optimal DFA-opt DFA-xover CDFA

Avg. Best Avg. Best Avg. Best

Bayg29 1610 1610 1610 1610 1610 1610 1610

Eil51 426 426.3 426 426.4 426 426 426

berlin52 7542 7542 7542 7542 7542 7542 7542

St70 675 675.7 675 675.6 675 675 675

Eil76 538 539.8 538 539 538 538 538

tsp225 3845 3943.1 3923 3941.9 3920 3916 3916

http://www.ijitjournal.org/

 International Journal of Information Technology (IJIT) – Volume 8 Issue 2, Mar - Apr 2022

ISSN: 2454-5414 www.ijitjournal.org Page 22

TABLE III. CDFA RESULTS COMPARED TO MDFA AND PDFA. THE CDFA FINDINGS WERE COMPILED FROM TEN DIFFERENT RUNS. THE

MOST PROMISING OUTCOMES ARE HIGHLIGHTED IN BOLD.

In
st

a
n

ce

O
p

ti
m

a
l

CDFA EDFA MDFA
B

es
t

A
v
g
.

P
D

b
es

t

P
D

a
v
g

B
es

t

A
v
g
.

P
D

b
es

t

P
D

a
v
g

B
es

t

A
v
g
.

P
D

b
es

t

P
D

a
v
g

a280 2578 2579 2579 0.039 0.039 - - - - - - - -

bayg29 1610 1610 1610 0.000 0.000 1624 1639 0.870 1.801 1610 1614 0 0.248

bays29 2020 2020 2020 0.000 0.000 2020 2066 0.000 2.277 2020 2036 0 0.792

berlin52 7542 7542 7542 0.000 0.000 8752 9135 16.044 21.122 7681 7933 1.843 5.184

eil51 426 426 426 0.000 0.000 497 540 16.667 26.761 432 443 1.409 3.991

eil76 538 538 538 0.000 0.000 789 813 46.654 51.115 554 574 2.974 6.691

gr202 40160 40161 40161 0.003 0.003 - - - - - - - -

gr666 294358 295584 295584 0.417 0.417 - - - - - - - -

pcb442 50778 50913 50913 0.266 0.266 - - - - - - - -

st70 675 675 675 0.000 0.000 985 1039 45.926 53.926 682 706 1.037 4.593

tsp225 3845 3916 3916 1.847 1.847 - - - - - - - -

ulysses16 6859 6860 6860 0.015 0.015 - - - - - - - -

ulysses22 7013 7014 7014 0.014 0.014 - - - - - - - -

In the second experiment, we used thirteen symmetric TSP

standard benchmarks to compare our proposed method, CDFA,

to the state-of-the-art discrete FA algorithms, PDFA and

MDFA.

Table III compares CDFA to the state-of-the-art discrete

FA algorithms, PDFA and MDFA, in terms of best and

average solution using thirteen symmetric TSP benchmarks.

In most cases, CDFA was able to obtain optimal results of

ability to attain the optimal solution, with regard to the best

and average solutions (ulysses16, ulysses22, bayg29, bays29,

berlin52, eil51, eil76, st70 and tsp225). In the following four

cases, CDFA came close to achieving an optimal solution for

both the best and average solution. Furthermore, when

compared to the average solution, CDFA surpassed the

MDFA and PDFA algorithms in reaching the best solutions

for all instances. Generally, in comparison to previous

algorithms, the CDFA was able to search for the best solution

until it met the termination criterion without premature

convergence or stagnation, notably for medium and large

cases. In general, the findings show that the CDFA structure,

which is based on the integration of numerous ideas such as

crossover, local search approaches, and the cooperative model,

achieved the desired balance of diversification and

intensification. As a result, the CDFA algorithm is able to

escape local optima and accelerate convergence. Therefore,

CDFA outperforms other algorithms such as PDFA and

MDFA in obtaining suboptimal/optimal solutions to TSP

problems.

V. CONCLUSION

This work used a new proposed FA version named the

cooperative discrete firefly algorithm (CDFA), which is based

on three primary contributions. The first is the use of local

search techniques containing 2-opt and 3-opt to accelerate

convergence toward optimum solutions. The second is the

adoption of the crossover operator, which increases the

intensification and so aids CDFA in efficiently exploiting the

existing search space. The third step is to construct a multi-

population model with a carefully managed communication

strategy. This paradigm allows for the preservation of the

diversity while also speeding up the execution. In terms of

finding the optimal/near-optimal solutions for numerous

benchmark TSP problems in the early iterations, the

experimental analysis demonstrated that the CDFA variation

outperforms the MDFA and PDFA. These findings show that

CDFA can solve large-scale TSP and, as a result, more

difficult optimization problems in real-world applications.

CDFA’s effectiveness may pave the way for new algorithms

to improve the quality of solutions to challenging optimization

problems.

REFERENCES
[1] I. Fister, X.-S. Yang, and J. Brest, “A comprehensive

review of firefly algorithms,” Swarm and Evolutionary

Computation, vol. 13, pp. 34–46, 2013.

[2] I. Fister, X.-S. Yang, D. Fister, and I. Fister Jr,

“Firefly algorithm: a brief review of the expanding literature,”

in Cuckoo Search and Firefly Algorithm. Springer, 2014, pp.

347–360.

http://www.ijitjournal.org/

 International Journal of Information Technology (IJIT) – Volume 8 Issue 2, Mar - Apr 2022

ISSN: 2454-5414 www.ijitjournal.org Page 23

[3] S. M. Farahani, A. A. Abshouri, B. Nasiri, and M.

Meybodi, “Some hybrid models to improve firefly algorithm

performance,” International Journal of Artificial Intelligence,

vol. 8, no. 12, pp. 97–117, 2012.

[4] A. Abdullah, S. Deris, M. S. Mohamad, and S. Z. M.

Hashim, “A new hybrid firefly algorithm for complex and

nonlinear problem,” in Distributed Computing and Artificial

Intelligence. Springer, 2012, pp. 673–680.

[5] A. Rajini and V. K. David, “A comparative

performance study on hybrid swarm model for micro array

data,” Int. J. Comput. Appl, vol. 30, no. 6, pp. 10–14, 2011.

[6] X.-S. Yang and S. Deb, “Eagle strategy using l´evy

walk and firefly algorithms for stochastic optimization,” in

Nature Inspired Cooperative Strategies for Optimization

(NICSO 2010). Springer, 2010, pp. 101–111.

[7] A. M. Altabeeb, A. M. Mohsen, and A. Ghallab, “An

improved hybrid firefly algorithm for capacitated vehicle

routing problem,” Applied Soft Computing, vol. 84, p. 105728,

2019. [Online]. Available: https://www.sciencedirect.com/

science/article/pii/S1568494619305095

[8] A. M. Altabeeb, A. M. Mohsen, L. Abualigah, and A.

Ghallab, “Solving capacitated vehicle routing problem using

cooperative firefly algorithm,” Applied Soft Computing, vol.

108, p. 107403, 2021. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S156849462

1003264

[9] I. Fister Jr, X.-S. Yang, I. Fister, and J. Brest,

“Memetic firefly algorithm for combinatorial optimization,”

arXiv preprint arXiv:1204.5165, 2012.

[10] M. Sayadi, R. Ramezanian, and N. Ghaffari-Nasab,

“A discrete firefly metaheuristic with local search for

makespan minimization in permutation flow shop scheduling

problems,” International Journal of Industrial Engineering

Computations, vol. 1, no. 1, pp. 1–10, 2010.

[11] M.-H. Horng, “Vector quantization using the firefly

algorithm for image compression,” Expert Systems with

Applications, vol. 39, no. 1, pp. 1078–1091, 2012.

[12] J. Luthra and S. K. Pal, “A hybrid firefly algorithm

using genetic operators for the cryptanalysis of a

monoalphabetic substitution cipher,” in Information and

Communication Technologies (WICT), 2011 World Congress

on. IEEE, 2011, pp. 202–206.

[13] G. K. Jati et al., Evolutionary discrete firefly

algorithm for travelling salesman problem. Springer, 2011.

[14] M. SARAEI, R. ANALOUEI, and P. MANSOURI,

“Solving of travelling salesman problem using firefly

algorithm with greedy approach,” Cumhuriyet Science Journal,

vol. 36, no. 6, pp. 267–273, 2015.

[15] L. Zhou, L. Ding, and X. Qiang, “A multi-population

discrete firefly algorithm to solve tsp,” in Bio-Inspired

Computing-Theories and Applications. Springer, 2014, pp.

648–653.

[16] L. Zhou, L. Ding, X. Qiang, and Y. Luo, “An

improved discrete firefly algorithm for the traveling salesman

problem,” Journal of Computational and Theoretical

Nanoscience, vol. 12, no. 7, pp. 1184–1189, 2015.

[17] A. M. Mohsen and W. Al-Sorori, “A new hybrid

discrete firefly algorithm for solving the traveling salesman

problem,” in Applied Computing and Information Technology.

Springer, 2017, pp. 169–180.

[18] L. Teng and H. Li, “Modified discrete firefly

algorithm combining genetic algorithm for traveling salesman

problem,” TELKOMNIKA (Telecommunication Computing

Electronics and Control), vol. 16, no. 1, pp. 424–431, 2018.

[19] M. Li, J. Ma, Y. Zhang, H. Zhou, and J. Liu, “Firefly

algorithm solving multiple traveling salesman problem,”

Journal of Computational and Theoretical Nanoscience, vol.

12, no. 7, pp. 1277–1281, 2015.

[20] H. S. Chuah, L.-P. Wong, and F. H. Hassan, “Swap-

based discrete firefly algorithm for traveling salesman

problem,” in International Workshop on Multi-Disciplinary

Trends in Artificial Intelligence. Springer, 2017, pp. 409–425.

[21] L. Zhou, L. Ding, X. Qiang, and Y. Luo, “An

improved discrete firefly algorithm for the traveling salesman

problem,” Journal of Computational and Theoretical

Nanoscience, vol. 12, no. 7, pp. 1184–1189, 2015.

[22] L. Jie, L. Teng, and S. Yin, “An improved discrete

firefly algorithm used for traveling salesman problem,” in

International Conference on Swarm Intelligence. Springer,

2017, pp. 593–600.

[23] M. Saraei and P. Mansouri, “Hmfa: A hybrid

mutation-base firefly algorithm for travelling salesman

problem,” in Fundamental Research in Electrical Engineering.

Springer, 2019, pp. 413–427.

[24] Y. WANG, Q.-P. WANG, and X.-F. WANG,

“Solving traveling salesman problem based on improved

firefly algorithm,” Computer Systems & Applications, vol. 8,

p. 37, 2018.

[25] A. V. Husselmann and K. Hawick, “Parallel

parametric optimisation with firefly algorithms on graphical

processing units,” in Proceedings of the International

Conference on Genetic and Evolutionary Methods (GEM).

The Steering Committee of The World Congress in Computer

Science, Computer Engineering and Applied Computing

(WorldComp), 2012, p. 1.

[26] M. Subutic, M. Tuba, and N. Stanarevic,

[27] “Parallelization of the firefly algorithm for

unconstrained optimization problems,” Latest Advances in

Information Science and Applications, vol. 22, no. 3, pp. 264–

269, 2012.

[28] X.-S. Yang, Nature-inspired metaheuristic algorithms.

Luniver press, 2010.

[29] ——, Engineering optimization: an introduction with

metaheuristic applications. John Wiley & Sons, 2010.

[30] W. Al-sorori, A. Mohsen, and W. Aljoby ßer, “An

improved hybrid bat algorithm for traveling salesman

problem,” in Bio-inspired Computing – Theories and

Applications, M. Gong, L. Pan, T. Song, and G. Zhang, Eds.

Singapore: Springer Singapore, 2016, pp. 504–511.

[31] W. Al-Sorori and A. M. Mohsen, “Multi-population

discrete bat algorithm with crossover to solve tsp,” in

Proceedings of the 16th International Conference on Hybrid

Intelligent Systems (HIS 2016), A. Abraham, A. Haqiq, A. M.

http://www.ijitjournal.org/

 International Journal of Information Technology (IJIT) – Volume 8 Issue 2, Mar - Apr 2022

ISSN: 2454-5414 www.ijitjournal.org Page 24

Alimi, G. Mezzour, N. Rokbani, and A. K. Muda, Eds. Cham:

Springer International Publishing, 2017, pp. 466–478.

[32] E. Osaba, X.-S. Yang, F. Diaz, P. Lopez-Garcia, and

R. Carballedo, “An improved discrete bat algorithm for

symmetric and asymmetric traveling salesman problems,”

Engineering Applications of Artificial Intelligence, vol. 48, pp.

59–71, 2016.

[33] P. Thakur and A. J. Singh, “Study of various

crossover operators in geneticalgorithms,” International

Journal of Advanced Research in Computer Science and

Software Engineering, vol. 4, no. 3, 2014.

http://www.ijitjournal.org/

