
International Journal of Information Technology (IJIT) – Volume 8 Issue 4, July – Aug 2022

ISSN: 2454-5414 www.ijitjournal.org Page 1

An Evolutionary Approach to Software Testing Ontology

Development
Nor Adnan Yahaya [1,2], Mansoor Abdullateef Abdulgabber [3],

Shadia Yahya Baroud [1]

[1] University Malaysia of Computer Science and Engineering, Selangor, MALAYSIA
[2] Malaysia University of Science and Technology, Selangor, MALAYSIA

 [3] Unilangit Academy, Selangor, MALAYSIA

ABSTRACT
Software Testing Ontology (STO) serves as a formal representation of the vocabulary to be used in descriptions pertaining to

software testing knowledge area. The need for a standardized STO is crucial in making descriptions of various aspects of

software testing body of knowledge and practices not only machine processable, but also can be done in a uniform way. This

paper describes the steps we have used to build the base for the standard STO that, in turn, can be extended and further

enhanced towards standardization. The evolving STO is envisioned to be an important addition towards enriching the

functionality of semantic software testing tools and systems.

Keywords: - Ontology, Software Testing, Semantic Web, Software Testing Ontology.

I. INTRODUCTION

The term ontology was first introduced in the field of

philosophy where it means a systematic explanation of

individual. Several fields of study have now used the term

with interpretations that suite their respective interests. In

philosophy, ontology is used to understand and distinguish the

meaning of things, the changes of their status, and to classify

the entities of the world. In scientific fields, ontology is

derived from cognitive semantic or the science of being and

used to describe semantic constructs based on the meaning of

words (as dictionary in linguistic) [1]. According to [2],

ontologies are now widely used in various applications such

as knowledge management, intelligent integration information,

information retrieval, bioinformatics, education, and relatively

new fields such as the Semantic Web.

Software testing is a growing discipline that sees the need

for a standardized ontology. A software testing ontology (STO)

then is a formal and an explicit description of concepts and

relationships used to describe various aspects of software

testing artefacts. It allows for the formalization of the

standardized software testing terms [3] so that reasoning built

on them can be automated. The STO can also be useful in

documenting and analysing software testing activities and

artefacts. It must be built to make some aspects of all these

machine processible and more amenable to realistic

interpretation by third party (i.e. human, machine, software

agent, etc). The STO can also be considered as a semantic

repository which manages the storage and query, offers easier

integration and dynamic interpretation of software testing test

cases and data. The semantic repository approach allows

easier changes and automated interpretation of the data

compared to the approach used in relational DBMS [4].

Testing ontology builds upon testing terminology which

comprises all terms that belong to the testing process in the

software engineering body of knowledge or domain. Defining

standard terms in any domain will benefit all parties working

within that specific field. Machines, through understanding of

how to manipulate the process, will also gain the same

benefits gained by humans from standardizing the terms in

that field. Without a standard testing terminology, different

personnel involved in the testing process might use different

terms for the same item. For example, one test manager calls

an item a “fault”, while the tester calls it “error,” and the

programmer calls it a “bug.” All three personnel are actually

referring to the same item. However, using a different

terminology, each may think the other is referring to a

separate item. In another scenario, if this data is input into a

machine for an automated testing process, the machine cannot

detect that these three terms are actually synonyms referring

to the same item, not three separate things. This causes delay

in the job or work due to the confusion caused. In a case study

that was held in an industrial setting, it was found that the job

was delayed due to the terminology confusion [5]. It is

foreseen that a shared understanding among different

terminologies would definitely overcome overlapping and

mismatching of concept interpretations. This will

subsequently benefit knowledge integration and raise the

potential of reusing resources. Ultimately, it also helps to

reduce data inconsistency.

This paper presents an approach to STO development using

semantic technological framework. This initiative is founded

by the following premises:

1. Software testing ontologies are crucial to test

automation and their development can be driven from the

perspective of test management that has to deal with extensive

testing-related knowledge.

2. The ontologies must be developed using a versatile

knowledge management (KM) framework and tool as well as

leveraging on semantic technologies.

RESEARCH ARTICLE OPEN ACCESS

http://www.ijitjournal.org/

International Journal of Information Technology (IJIT) – Volume 8 Issue 4, July – Aug 2022

ISSN: 2454-5414 www.ijitjournal.org Page 2

3. Standardization of STO can be achieved through

evolutionary process by making continuous extension,

alignment, and merging of ontologies.

This paper is structured as follows. Section 2 presents the

recent trend in software testing. Section 3 describes the main

steps involved in building the core STO. Section 4 illustrates

the implementation of the ontology in Protégé. This is

followed by the evaluation of the STO in Section 5. Finally,

Section 6 concludes and summarizes the contribution of this

work.

II. RECENT TREND IN SOFTWARE

TESTING

Software testing has become a mature discipline, both in

theory and practice. With the advent of the new technologies

of IR4.0, the trend towards providing more and more

automated support to the software testing process is expected

to prevail. Central to this is the need to have good automated

support for test management activities that relies on efficient

and effective management of testing-related knowledge. A

study on the most promising trend in software testing was

made to help steer the proposed evolutionary approach to

software testing ontology development. The amalgamation of

knowledge-based testing and the semantic web technologies is

found to be most promising in developing the technological

framework for the evolving STO.

A. Knowledge Management in Software Testing

The systematic literature review [6] captures the following

important views and observations from various researchers

that point to the future use of knowledge management in

software testing:

1. Knowledge management ideas and methodologies

are known to have been used in several software development

process phases [7],[8],[9].

2. Since software testing itself is a knowledge intensive

process and also an important component of software

engineering, it is critical to have automated tools for catching,

distributing, evaluating, retrieving, and displaying testing

knowledge [10].

3. The software testing community has acknowledged

the importance of knowledge management and having to learn

from the knowledge management community. Accordingly,

various efforts have been made to incorporate knowledge

management where knowledge-based software testing is used

to generate tests utilizing existing system knowledge as an

example [11].

4. The tester's own expertise, as well as knowledge of

software testing and application domains can be utilized to

produce tests and identify faults [12].

All the above suggest that testing information should be

gathered and characterized in a cost-effective and managed

manner by employing knowledge management principles.

B. Semantic Web Technologies in Software Testing

Furthermore, the systematic literature review [6] also

stipulates that with the advent of semantic web technologies,

new approaches to merging software and knowledge

engineering have also emerged. The review also claims that a

number of researches in software testing that have used

knowledge management in activities such as automated test

generation have taken advantage of semantic web

technologies. The following cited works by the review

provides some good insights on the deployment of semantic

web technologies in software testing.

1. Increasing test automation can be achieved by

providing a fairly formal specification of test process data.

This is considered as one of the main challenges in

knowledge-based software testing approaches. However,

because of their logic-based character, inference capabilities,

and machine comprehensibility, semantic web data models

and ontologies are strong candidates for supplying this

formalism and increasing test automation [13].

2. An ontology can be used to model requirements from

a software requirements specification (SRS), where the

inference rules can specify test case derivation strategies from

that ontology. The resultant meta-model of a requirement

comprises requirement conditions and parameters as well as

test results and actions to be represented in the ontology [14].

3. Other software testing operations, such as test data

generation, test reuse, test oracle can also be supported by

semantic web technologies. For example, test data can be

generated using the Web of Data, a worldwide dataset holding

billions of interrelated and machine processable statements

encoded in RDF triples [15].

C. Research in Software Testing Ontologies

A systematic literature review (SLR) on software testing

ontologies [16] identified 12 different ontologies that were

developed during the period from 2000 to 2011 which were

then analyzed to answer their research questions. The SLR

paper reveals the following important observations:

1. Software testing domain is highly complex which

makes ontology development for it not a straight-forward task.

2. Most of the ontologies that have been developed

have very limited coverage.

3. The approaches and techniques being used vary,

which have led to heterogeneity and the need for a common

reference foundational ontology.

Subsequently, the same group of researchers developed a

Reference Ontology on Software Testing (ROoST) which is

described in [17].

More recently, another systematic review on the past and

current works on software testing ontologies [18] concludes

that ROoST is the most formally rigorous testing ontology,

well modularized and balanced with respect to taxonomic and

non-taxonomic relationships. However, the researchers of the

study opine that ROoST does have some limitations too.

Furthermore, the same study also identified the problem of

limited coverage where most of the analyzed ontologies have

a lack of terminological coverage on non-functional

requirements (NFRs) and static testing.

http://www.ijitjournal.org/

International Journal of Information Technology (IJIT) – Volume 8 Issue 4, July – Aug 2022

ISSN: 2454-5414 www.ijitjournal.org Page 3

However, with the advent of the Semantic Web initiative,

while ontology has been closely associated with semantic

technologies, none of the above reviews project out any work

on software testing ontology development that leverage on

semantic web technologies.

The above scenarios seem to suggest that works in software

testing ontology are still in the early stage towards maturity.

There is still no clear indication of any movement towards

having one unified ontology for software testing. As such,

more research and efforts in the development of software

testing ontology are still needed, especially in term of

leveraging semantic web technologies.

Towards that end, an approach to development of a software

testing ontology management system that is built on semantic

technological framework is presented. The next section

provides a general description of the steps involved in

building the base for the standard STO that, in turn, can be

extended and further enhanced. The evolving STO is

envisioned to be an important addition towards enriching the

functionality of semantic software testing tools and systems.

The evolutionary approach is expected to help to minimize the

current heterogeneity, ambiguity, and incompleteness

problems in terms, properties, and relationships as stipulated

in [18].

III. BUILDING THE SOFTWARE

TESTING ONTOLOGY

Building ontologies requires the selection of a

comprehensive guide. The steps involved in developing the

proposed STO is based on the guide produced by [19] that

emphasizes on domain reusability of any developed ontology.

Accordingly, the first step being taken here was to start with a

very high-level conceptualization.

 The method in [19] was selected not only because its

popularity, but it also provides a simple explanation on how to

develop and evaluate the first ontology through clearly

identified steps. Several challenges were met while building

the ontology. In particular, the main one was classifying terms

to formalize the conceptualization. This task consumed a lot

of effort and required critical decisions. In the aforementioned

guide, there are seven main steps to build STO which are

presented below.

A. Determine the domain and scope of STO

Several selected questions were used to define the domain

and scope of STO, characterized by the following goals:

purpose, usage, type of information, and who will need the

STO. Table 1 illustrates the questions & answers used.

Table 1 Determine STO’s domain & scope

Question Answer

What is the

domain the

Ontology will

cover?

The purpose of building this ontology is to cover

the software testing area as the Domain & it is

referred to as STO.

What is STO

going to be used

for?

The STO is built to be used as part of an

infrastructure for Semantic Technology

regardless of which application uses it with the

intention of focusing on representing test cases

for management and reusability.

What type of

answers should

STO provide?

STO needs to provide an understandable,

conceptualized and linked vocabulary required

by the Software Testing Domain.

Who will use

STO?

The STO end users are identified as third party

whether they are machines such as (Semantic

Agents, Semantic Desktop, etc) or humans such

as (Software Testers, Test Managers Test Case

Creators, etc)

B. Consider reusing existing Software Testing Ontologies

There are Software Testing Ontologies which have already

been built and published in the literature. Studying some of

the existing ontologies was an important process for this step.

Table 2 shows the analysed findings of the study.

Table 2 Analysed Findings for Existing STO

Ontology

Name
Description Reference

Ontology

of

Software

Testing

OntoTest

Defines software testing concepts

in a layered approach. The main

layer covers main testing concepts

and relations. The sub layers cover

Testing Processes, Testing Phases,

Testing Artefact, Testing Steps,

Testing Procedures and Testing

Resources.

 [20]

Software

Testing

Ontology

for WS

(STOWS)

Defines concepts related to

software testing into two groups:

the basic concepts include context,

activity, method, artefact, and

environment; and compound

concepts include tester, capability

and test task.

 [21]

Test

Ontology

Model

(TOM)

Defined to specify the test

concepts, relationships and

semantics from two aspects:

(1)Test Design such as test data,

test behaviour and test sases; and

(2) Test Execution such as test plan,

schedule and configuration.

 [22]

Table 2 above implies that there are still some limitations

on the domain terms (especially those related to test case as

individual) as well as relations between concepts and specific

tasks. Therefore, instead of reusing the whole ontology, only

some of the concepts’ names were adopted while the

remaining concepts were introduced from scratch to overcome

the aforementioned limitations.

C. Enumerate important terms in the ontology

http://www.ijitjournal.org/

International Journal of Information Technology (IJIT) – Volume 8 Issue 4, July – Aug 2022

ISSN: 2454-5414 www.ijitjournal.org Page 4

International Software Testing Qualifications Board is a

not-for-profit association founded in Edinburgh in November

2002. One of their missions is to promote a common language

for testers globally. They form groups in different areas of

software testing and one of the groups is the ISTQB Glossary

working group which aims to deliver a standard glossary of

testing and related terms. There are various versions of the

glossary as the group keeps updating the new terms when

necessary. STO was built based on ISQB-glossary Version

3.01 [3] as it presents the most current concepts, terms and

definitions of software testing domain and the related artefacts.

All terms and concepts presented in the glossary are covered

and the taxonomy produced was based on our understanding

of the domain. The next step shows how these concepts are

classified.

D. Define the concepts and concept hierarchy in the STO

Defining the concepts and their hierarchy concern several

approaches identified in the literature as mentioned in the

guidelines of the proposed method. The top-down approach is

used based on the assumption that it would be more

understandable by end users. This definition engaged us with

several steps as described briefly below.

1. Categorize the main concepts according to general

classifications. This is shown in Table 3 below.

Table 3 Definition of General Classification

General

Classification
Definition

Tester Terms include particular parties that conduct

the test activity.

Testing Task Terms include everyday jobs for performing

the testing process.

Artefact Terms include related pieces to the test and

testing process.

Environment Terms include the surrounding of the testing

process and the trait terms from which the

process can be described.

2. Identify the sub and sub-sub concepts of the high-level

concepts (the general classifications). This is shown in

Table 4 below.

Table 4 Identifying the sub-Concepts

Main Concept Sub Concept Sub-Sub Concept

Tester

Human

Individual

Team

Software_Tool

Environment

Features

Hardware

Software

Artefact

Text

Code

Document

Data

Measurement

Images

Standard

Criteria

Guide

Report

Plan

Term

TestingTask

Context

Purpose

Scope

Activities

Intrinsic

Extrinsic

Method

Technique

Approach

Practice

3. Classifying the remaining terms in the glossary into

these identified concepts.

E. Define the properties of STO concepts

Usually, concepts alone are not enough to give all

necessary information. Hence, defining the properties to show

the relations between different concepts in the ontology is a

necessary step. As shown in Table 5, examples of relations

between different concepts are identified. The examples

demonstrate a sample view, as STO was built within 59

different types of properties.

http://www.ijitjournal.org/

International Journal of Information Technology (IJIT) – Volume 8 Issue 4, July – Aug 2022

ISSN: 2454-5414 www.ijitjournal.org Page 5

Table 5 Examples of Properties

Concept Object Property Inverse Property

Team hasControl isControlledBy

Software_Tool hasAutoProcess isPerformedBy

Code hasTest isTestedBy

Measurement hasMeasurement isMeasurementOf

Technique hasTechnique isTechniqueOf

Approach has Approach isApproachOf

F. Define the data properties of STO concepts

This step is required for identifying the data type for each

property. The benefit of using data type is the link which can

be created between the classes and XML scheme. The STO

was built within 32 data type properties. Table 6 shows a

sample of the data type. The domain field shows names of

concepts that data represent, while the range shows the types

of the data.

Table 6 Examples of Data Properties

Data Property Domain Range

hasTestID Individual string

hasNumberofLine Code Integer

hasCreator Artefact string

isInfectedCode Code Boolean

hasSource Test Case Suite string

G. Create instances and individuals of classes

Once the concepts, properties and their data properties were

defined, the last step in preparing the STO is to create the

instances and individuals of these concepts. Table 7 displays a

sample of individuals. With regard to the STO concepts, 106

individuals were built in.

Table 7 Examples of Individuals

Class Sub Concept/Individual

Images

Call_Graph

Cause-effect_Diagram

Control_Flow_Graph

Features

Accuracy

Complexity

Maintainability

IV. IMPLEMENTATION OF SOFTWARE

TESTING ONTOLOGY WITH PROTÉGÉ

4.0

Protégé 4.0 is an open-source standalone application,

written in Java. It provides a plug-and-play environment for

the OWL editor that was used to implement the STO. The

implementation was performed by following the Protégé

guide after getting the STO taxonomy as discussed in the

previous section ready. Protégé, with its plug in OWLViz,

provides a graphical view for the ontology which makes it

easy to understand the relations.

The following three major steps illustrate the major portion

of the STO implementation.

A. Building the Classes hierarchy

The STO uses classes (Protégé Guideline) as its basic

building block. Classes are then considered as a concrete

representation of concepts. Classes and their hierarchy are

used to represent the STO taxonomy concepts. Classes are

built based on our understanding of the Software Testing

Domain. The following steps were followed:

1. Building parent classes to represent the general

classification.

2. Building children classes to represent the sub classes.

3. Building grandchildren classes to represent the sub-

sub classes.

4. Building the Classes’ Individuals to represent the

domain objects.

Figure 1 Class hierarchy

Figure 1 shows the hierarchy of the classes. As shown, the

STO has four main layers. Each layer is described as follows:

▪ Tester: This holds the meaning of what/who performs

the task of testing. In this layer, Tester is either a person

(i.e. human either individual or team) or software (i.e.

tools for testing).

http://www.ijitjournal.org/

International Journal of Information Technology (IJIT) – Volume 8 Issue 4, July – Aug 2022

ISSN: 2454-5414 www.ijitjournal.org Page 6

▪ Environment: This holds the meaning of related

characteristics to Test. Environment has Features,

Hardware and Software as subclasses.

1. Feature Class comprises the behavior terms such as (Pass,

Fail and Testability, etc).

2. Hardware Class comprises terms involving hardware

such as (Sub, Storage, and Simulator etc).

3. Software Class comprises the software terms such as

(Buffer, System and Compiler, etc).

▪ Artefact: This holds the meaning of objects under the

test activities. Text, Image and Standard are created as

subclasses of Artefact.

1. Text Class – all included terms describe the Code,

Document, Data or Measurement Data.

2. Image Class portrays instances of graphic terms in the

domain.

3. Standard Class includes all standards that have been

inherited from standard organizations or frameworks. It is

classified in Guide, Criteria, Report, Plan or Term classes.

▪ Task Testing: This defines terms of the main activities

in the software testing domain that is in Context,

Activity or Method classes.

1. Context Class holds terms describing activities that occur

in various software development stages, either for Purpose or

Scope.

2. Activity Class includes terms pointing to activities other

than testing itself within (Intrinsic) or without (Extrinsic) the

system.

3. Method Class takes account of testing activities, whether

it is a Technique, Approach or Practice.

Obviously with this simple explanation, the key factor that we

depended on in building the general hierarchy classes of the

STO is to give effortless meaningful representation for a

normal user with basic knowledge in software testing domain.

Description Logic specifies hierarchy using restricted set of

first-order formulas, and so does OWL reasoning rules. For

this purpose, a sub-set of OWL reasoning rules that support

our hierarchy classes was derived. For instance, the STO

hierarchy class rules are illustrated in Table 8.

Table 8 STO hierarchy class rules

Rule Description

subClassOf (?Individual rdfs:subClassOf ?Human)

(?Human rdfs:subClassOf ?Tester)

(?Individual rdfs:subClassOf ?Tester)

disjointWith (?Individual owl:disjointWith ?Team)

(?Inspector rdf:type ?Individual)

(?Change_Control_Board rdf:type ?Team)

(?Inspector owl:differentFrom ?

Change_Control_Board)

B. Building the Object & Data Properties

Object Properties are binary relations between the classes.

After finishing building all classes, the possible relations

(Object Property) between these classes were created. Data

properties describe relationships between classes and data

values. Some STO classes can be represented by data values.

A sub-set of OWL reasoning rules that support data properties

was derived for this purpose. For instance, hasText & hasTest

properties are illustrated in Table 9.

Table 9 STO property rules

Rule Description

subPropertyOf (?hasDocument

rdfs:subPropertyOf ?hasData)

(?hasData rdfs:subPropertyOf ?hasText)
(?hasDocument

rdfs:subPropertyOf ?hasText)

inverseOf (?hasTest owl:inverseOf ?isTestedBy)

(?Tester ?hasTest ?Code)

(?Code ?isTestedBy ?Tester)

C. Building OWL Restrictions Rules

A restriction describes a class of individuals based on the

relationships that members of the class participate in. STO

restrictions are of two types:

1. Property Restrictions which consist of:

a. someValuesFrom: Existential Restrictions are also known

as Some Restrictions, or as some values from restrictions. It

can be denoted in DL-Syntax as:

b. allValuesFrom: Universal Restrictions are also known as all

values from restrictions. It can be denoted in DL-Syntax as:

2. Data Restrictions A datatype property can also be used in

a restriction to relate individuals to members of a given

datatype. For instance, the Code class which has a Boolean

data type to check if infected with bugs, has a String data type

to carry the name of the code creator and Integer data type to

store the number of codes.

V. EVALUATION OF SOFTWARE TEST

ONTOLOGY

The STO was evaluated by using reasoning service offered

by reasoners plugged in Protégé. The main benefits of the

services are computing the classes’ hierarchy and logical

consistency checking. The STO verification process started at

the early stages of the development to ensure the correctness

and avoid propagation errors. The two reasoners were used to

verify the STO.

1. FaCT++: the first reasoner was used as it is shipped with

Protégé. The inferred hierarchy is the automatically computed

http://www.ijitjournal.org/

International Journal of Information Technology (IJIT) – Volume 8 Issue 4, July – Aug 2022

ISSN: 2454-5414 www.ijitjournal.org Page 7

class hierarchy by the reasoner. Figure 2 presents the inferred

hierarchy graph showing the “no exists” of the inconsistent

class. In case of inconsistencies, Protégé would highlight them

in red. Meanwhile, the class “Nothing” is to identify the

inconsistent classes if any exist.

Figure 2 FaCT++ “Nothing” class shows the “no exists” of Inconsistent

Class

2. Pellet: the complete OWL-DL reasoner [23]. Protégé

allows Pellet plug-in to be installed and be used to compute

the OWL. Hence, the computation of the STO via Pellet

serves as the second evaluation. Figure 3 presents the inferred

hierarchy graph showing the “no exists” of inconsistent class.

Figure 3 Pellet reasoner shows the “no exists” of Inconsistent Class

VI. CONCLUSIONS

This paper has illustrated the steps involved in creating the

base for a standard software testing ontology (STO). The

illustration, which is supported by tables and figures taken

from [24], has also given some insights on the utility of the

approach based on the guide [19] in developing the base

ontology which, in turn, can be made to evolve from there.

Since semantic technological framework is used from the

outset (illustrated through the use of Protégé), the evolving

STO can serve as an important addition towards enriching the

functionality of semantic software testing tools and systems.

The base STO covers the terminology found in standard

testing glossary which can be expanded to cover the whole

hundreds of concepts related to software testing based on the

previously mentioned standard testing glossary. This is large

enough to supply accurate reasoning terms for semantic

systems such as Semantic Test Case Management System or

any other that concerns software testing.

REFERENCES

[1] H. K. Seung and K. L. Sim, “Ontology revision on the

semantic Web: Integration of belief revision theory,”

Proc. Annu. Hawaii Int. Conf. Syst. Sci., 2007, doi:

10.1109/HICSS.2007.410.

[2] A. Gómez-Pérez, M. Fernández-López and O. Corcho,

Ontological Engineering: with examples from the areas

of Knowledge Management, e-Commerce and the

Semantic Web, Springer Verlag, 2004.

[3] I. Software and T. Qualifications, “Standard glossary of

terms used in Software Testing International Software

Testing Qualifications Board,” vol. 3, pp. 1-53, 2014.

[4] J. Davies, R. Studer, and P. Warren, Semantic Web

Technologies: Trends and Research in Ontology-based

Systems. 2006.

[5] T. Parveen, S. Tilley, and G. Gonzalez, “A case study in

test management,” in Proceedings of the Annual

Southeast Conference, 2007, vol. 2007, doi:

10.1145/1233341.1233357.

[6] M. Dadkhah, S. Araban, and S. Paydar, “A systematic

literature review on semantic web enabled software

testing,” J. Syst. Softw., vol. 162, p. 110485, 2020, doi:

10.1016/j.jss.2019.110485.

[7] F. O. Bjørnson and T. Dingsøyr, “Knowledge

management in software engineering: A systematic

review of studied concepts, findings and research

methods used,” Information and Software Technology,

vol. 50, no. 11. 2008, doi: 10.1016/j.infsof.2008.03.006.

[8] I. Rus and M. Lindvall, “Knowledge management in

software engineering,” IEEE Software, vol. 19, no. 3.

2002, doi: 10.1109/MS.2002.1003450.

[9] Vasanthapriyan, J. Tian, and J. Xiang, “A Survey on

Knowledge Management in Software Engineering,”

2015, doi: 10.1109/QRS-C.2015.48.

[10] J. Andrade et al., “An architectural model for software

testing lesson learned systems,” in Information and

Software Technology, 2013, vol. 55, no. 1, doi:

10.1016/j.infsof.2012.03.003.

http://www.ijitjournal.org/

International Journal of Information Technology (IJIT) – Volume 8 Issue 4, July – Aug 2022

ISSN: 2454-5414 www.ijitjournal.org Page 8

[11] É. F. De Souza, R. D. A. Falbo, and N. L. Vijaykumar,

“Knowledge management initiatives in software testing:

A mapping study,” in Information and Software

Technology, 2015, vol. 57, no. 1, doi:

10.1016/j.infsof.2014.05.016.

[12] J. Itkonen, M. V. Mäntylä, and C. Lassenius, “The role

of the tester’s knowledge in exploratory software

testing,” IEEE Trans. Softw. Eng., vol. 39, no. 5, 2013,

doi: 10.1109/TSE.2012.55.

[13] J. J. Gutiérrez, M. J. Escalona, and M. Mejías, “A

Model-Driven approach for functional test case

generation,” J. Syst. Softw., vol. 109, 2015, doi:

10.1016/j.jss.2015.08.001.

[14] V. Tarasov, H. Tan, M. Ismail, A. Adlemo, and M.

Johansson, “Application of inference rules to a software

requirements ontology to generate software test cases,”

in Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics), 2017, vol. 10161

LNCS, doi: 10.1007/978-3-319-54627-8_7.

[15] L. Mariani, M. Pezzé, O. Riganelli, and M. Santoro,

“Link: Exploiting the web of data to generate test

inputs,” 2014, doi: 10.1145/2610384.2610397.

[16] É. F. Souza, R. A. Falbo, and N. L. Vijaykumar,

“Ontologies in software testing: A Systematic Literature

Review,” CEUR Workshop Proc., vol. 1041, no. October,

pp. 71–82, 2013.

[17] É. F. De Souza, R. De Almeida Falbo, and N. L.

Vijaykumar, “ROoST: Reference ontology on software

testing,” Appl. Ontol., vol. 12, no. 1, pp. 59–90, 2017,

doi: 10.3233/AO-170177.

[18] G. Tebes, D. Peppino, P. Becker, G. Matturro, M. Solari,

and L. Olsina, “Analyzing and documenting the

systematic review results of software testing ontologies,”

Inf. Softw. Technol., vol. 123, p. 106298, Jul. 2020, doi:

10.1016/J.INFSOF.2020.106298.

[19] N. F. Noy and D. L. McGuiness, “Ontology

Development 101: A Guide to Creating Your First

Ontology,” Stanford Knowledge Systems Laboratory, doi:

10.1016/j.artmed.2004.01.014.

[20] E. F. Barbosa, E. Y. Nakagawa, and J. C. Maldonado,

“Towards the establishment of an ontology of software

testing,” 18th International Conference on Software

Engineering and Knowledge Engineering, SEKE 2006,

May 2014, pp 522-525.

[21] [1] H. Zhu, “A framework for service-oriented testing of

web services,” in Proceedings - International Computer

Software and Applications Conference, 2006, vol. 2, doi:

10.1109/COMPSAC.2006.95.

[22] [2] X. Bai, S. Lee, W. T. Tsai, and Y. Chen, “Ontology-

based test modeling and partition testing of web

services,” 2008, doi: 10.1109/ICWS.2008.111.

[23] [3] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y.

Katz, “Pellet: A practical OWL-DL reasoner,” Web

Semantics, vol. 5, no. 2 2007, doi:

10.1016/j.websem.2007.03.004

[24] M. A. A. Abdulhak, “An ontology-based approach for

test case management system using Semantic

Technology,” PhD thesis, Faculty of Computer Science

and Information Technology, University of Malaya,

Kuala Lumpur, Malaysia, 2013.

http://www.ijitjournal.org/

